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3.2 Heat Exchanger

Summary Here we shall learn more about geometry input and triangulation files, as well
as read and write operations.

The problem Let {Ci}1,2, be 2 thermal conductors within an enclosure C0. The first one is
held at a constant temperature u1 the other one has a given thermal conductivity κ2 5 times
larger than the one of C0. We assume that the border of enclosure C0 is held at temperature
20◦C and that we have waited long enough for thermal equilibrium.
In order to know u(x) at any point x of the domain Ω, we must solve

∇ · (κ∇u) = 0 in Ω, u|Γ = g

where Ω is the interior of C0 minus the conductors C1 and Γ is the boundary of Ω, that is
C0∪C1 Here g is any function of x equal to ui on Ci. The second equation is a reduced form
for:

u = ui on Ci, i = 0, 1.

The variational formulation for this problem is in the subspace H1
0 (Ω) ⊂ H1(Ω) of functions

which have zero traces on Γ.

u− g ∈ H1
0 (Ω) :

∫
Ω

∇u∇v = 0 ∀v ∈ H1
0 (Ω)

Let us assume that C0 is a circle of radius 5 centered at the origin, Ci are rectangles, C1

being at the constant temperature u1 = 60◦C.

Example 3.3 (heatex.edp) // file heatex.edp
int C1=99, C2=98; // could be anything such that 6= 0 and C1 6= C2
border C0(t=0,2*pi){x=5*cos(t); y=5*sin(t);}

border C11(t=0,1){ x=1+t; y=3; label=C1;}
border C12(t=0,1){ x=2; y=3-6*t; label=C1;}
border C13(t=0,1){ x=2-t; y=-3; label=C1;}
border C14(t=0,1){ x=1; y=-3+6*t; label=C1;}

border C21(t=0,1){ x=-2+t; y=3; label=C2;}
border C22(t=0,1){ x=-1; y=3-6*t; label=C2;}
border C23(t=0,1){ x=-1-t; y=-3; label=C2;}
border C24(t=0,1){ x=-2; y=-3+6*t; label=C2;}

plot( C0(50) // to see the border of the domain
+ C11(5)+C12(20)+C13(5)+C14(20)
+ C21(-5)+C22(-20)+C23(-5)+C24(-20),
wait=true, ps="heatexb.eps");

mesh Th=buildmesh( C0(50)
+ C11(5)+C12(20)+C13(5)+C14(20)
+ C21(-5)+C22(-20)+C23(-5)+C24(-20));

plot(Th,wait=1);
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fespace Vh(Th,P1); Vh u,v;
Vh kappa=1+2*(x<-1)*(x>-2)*(y<3)*(y>-3);
solve a(u,v)= int2d(Th)(kappa*(dx(u)*dx(v)+dy(u)*dy(v)))

+on(C0,u=20)+on(C1,u=60);
plot(u,wait=true, value=true, fill=true, ps="heatex.eps");

Note the following:

• C0 is oriented counterclockwise by t, while C1 is oriented clockwise and C2 is oriented
counterclockwise. This is why C1 is viewed as a hole by buildmesh.

• C1 and C2 are built by joining pieces of straight lines. To group them in the same
logical unit to input the boundary conditions in a readable way we assigned a label
on the boundaries. As said earlier, borders have an internal number corresponding
to their order in the program (check it by adding a cout<<C22; above). This is
essential to understand how a mesh can be output to a file and re-read (see below).

• As usual the mesh density is controlled by the number of vertices assigned to each
boundary. It is not possible to change the (uniform) distribution of vertices but a
piece of boundary can always be cut in two or more parts, for instance C12 could be
replaced by C121+C122:

// border C12(t=0,1) x=2; y=3-6*t; label=C1;
border C121(t=0,0.7){ x=2; y=3-6*t; label=C1;}
border C122(t=0.7,1){ x=2; y=3-6*t; label=C1;}
... buildmesh(.../* C12(20) */ + C121(12)+C122(8)+...);
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Figure 3.2: The heat exchanger

Exercise Use the symmetry of the problem with respect to the axes; triangulate only one
half of the domain, and set Dirichlet conditions on the vertical axis, and Neumann conditions
on the horizontal axis.
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Writing and reading triangulation files Suppose that at the end of the previous program
we added the line

savemesh(Th,"condensor.msh");

and then later on we write a similar program but we wish to read the mesh from that file.
Then this is how the condenser should be computed:

mesh Sh=readmesh("condensor.msh");
fespace Wh(Sh,P1); Wh us,vs;
solve b(us,vs)= int2d(Sh)(dx(us)*dx(vs)+dy(us)*dy(vs))

+on(1,us=0)+on(99,us=1)+on(98,us=-1);
plot(us);

Note that the names of the boundaries are lost but either their internal number (in the case
of C0) or their label number (for C1 and C2) are kept.

3.3 Acoustics

Summary Here we go to grip with ill posed problems and eigenvalue problems
Pressure variations in air at rest are governed by the wave equation:

∂2u

∂t2
− c2∆u = 0.

When the solution wave is monochromatic (and that depend on the boundary and initial
conditions), u is of the form u(x, t) = Re(v(x)eikt) where v is a solution of Helmholtz’s
equation:

k2v + c2∆v = 0 in Ω,
∂v

∂n
|Γ = g. (3.1)

where g is the source. Note the “+” sign in front of the Laplace operator and that k > 0 is
real. This sign may make the problem ill posed for some values of c

k
, a phenomenon called

“resonance”.
At resonance there are non-zero solutions even when g = 0. So the following program may
or may not work:

Example 3.4 (sound.edp) // file sound.edp
real kc2=1;
func g=y*(1-y);

border a0(t=0,1) { x= 5; y= 1+2*t ;}
border a1(t=0,1) { x=5-2*t; y= 3 ;}
border a2(t=0,1) { x= 3-2*t; y=3-2*t ;}
border a3(t=0,1) { x= 1-t; y= 1 ;}
border a4(t=0,1) { x= 0; y= 1-t ;}
border a5(t=0,1) { x= t; y= 0 ;}
border a6(t=0,1) { x= 1+4*t; y= t ;}



3.4. THERMAL CONDUCTION 39

mesh Th=buildmesh( a0(20) + a1(20) + a2(20)
+ a3(20) + a4(20) + a5(20) + a6(20));

fespace Vh(Th,P1);
Vh u,v;

solve sound(u,v)=int2d(Th)(u*v * kc2 - dx(u)*dx(v) - dy(u)*dy(v))
- int1d(Th,a4)(g*v);

plot(u, wait=1, ps="sound.eps");

Results are on Figure 3.3. But when kc2 is an eigenvalue of the problem, then the solution
is not unique: if ue 6= 0 is an eigen state, then for any given solution u + ue is another a
solution. To find all the ue one can do the following

real sigma = 20; // value of the shift
// OP = A - sigma B ; // the shifted matrix

varf op(u1,u2)= int2d(Th)( dx(u1)*dx(u2) + dy(u1)*dy(u2) - sigma* u1*u2 );
varf b([u1],[u2]) = int2d(Th)( u1*u2 ) ; // no Boundary condition see note
9.1

matrix OP= op(Vh,Vh,solver=Crout,factorize=1);
matrix B= b(Vh,Vh,solver=CG,eps=1e-20);

int nev=2; // number of requested eigenvalues near sigma

real[int] ev(nev); // to store the nev eigenvalue
Vh[int] eV(nev); // to store the nev eigenvector

int k=EigenValue(OP,B,sym=true,sigma=sigma,value=ev,vector=eV,
tol=1e-10,maxit=0,ncv=0);

cout<<ev(0)<<" 2 eigen values "<<ev(1)<<endl;
v=eV[0];
plot(v,wait=1,ps="eigen.eps");

3.4 Thermal Conduction

Summary Here we shall learn how to deal with a time dependent parabolic problem. We
shall also show how to treat an axisymmetric problem and show also how to deal with a
nonlinear problem.

How air cools a plate We seek the temperature distribution in a plate (0, Lx)× (0, Ly)×
(0, Lz) of rectangular cross section Ω = (0, 6) × (0, 1); the plate is surrounded by air at
temperature ue and initially at temperature u = u0 + x

L
u1. In the plane perpendicular

to the plate at z = Lz/2, the temperature varies little with the coordinate z; as a first
approximation the problem is 2D.

We must solve the temperature equation in Ω in a time interval (0,T).

∂tu−∇ · (κ∇u) = 0 in Ω× (0, T ),
u(x, y, 0) = u0 + xu1

κ
∂u

∂n
+ α(u− ue) = 0 on Γ× (0, T ). (3.2)
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Figure 3.3: Left:Amplitude of an acoustic signal coming from the left vertical wall. Right:
first eigen state (λ = (k/c)2 = 19.4256) close to 20 of eigenvalue problem :−∆ϕ = λϕ and
∂ϕ
∂n

= 0 on Γ

Here the diffusion κ will take two values, one below the middle horizontal line and ten times
less above, so as to simulate a thermostat. The term α(u − ue) accounts for the loss of
temperature by convection in air. Mathematically this boundary condition is of Fourier (or
Robin, or mixed) type.
The variational formulation is in L2(0, T ;H1(Ω)); in loose terms and after applying an
implicit Euler finite difference approximation in time; we shall seek un(x, y) satisfying for all
w ∈ H1(Ω): ∫

Ω

(
un − un−1

δt
w + κ∇un∇w) +

∫
Γ

α(un − uue)w = 0

func u0 =10+90*x/6;
func k = 1.8*(y<0.5)+0.2;
real ue = 25, alpha=0.25, T=5, dt=0.1 ;

mesh Th=square(30,5,[6*x,y]);
fespace Vh(Th,P1);
Vh u=u0,v,uold;

problem thermic(u,v)= int2d(Th)(u*v/dt + k*(dx(u) * dx(v) + dy(u) * dy(v)))
+ int1d(Th,1,3)(alpha*u*v)
- int1d(Th,1,3)(alpha*ue*v)
- int2d(Th)(uold*v/dt) + on(2,4,u=u0);

ofstream ff("thermic.dat");
for(real t=0;t<T;t+=dt){

uold=u; // uold ≡ un−1 = un ≡u
thermic; // here solve the thermic problem
ff<<u(3,0.5)<<endl;
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plot(u);
}

Notice that we must separate by hand the bilinear part from the linear one.
Notice also that the way we store the temperature at point (3,0.5) for all times in file
thermic.dat. Should a one dimensional plot be required, the same procedure can be
used. For instance to print x 7→ ∂u

∂y
(x, 0.9) one would do

for(int i=0;i<20;i++) cout<<dy(u)(6.0*i/20.0,0.9)<<endl;

Results are shown on Figure 3.4.
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Figure 3.4: Temperature at T=4.9. Right: decay of temperature versus time at x=3, y=0.5

3.4.1 Axisymmetry: 3D Rod with circular section

Let us now deal with a cylindrical rod instead of a flat plate. For simplicity we take κ = 1.
In cylindrical coordinates, the Laplace operator becomes (r is the distance to the axis, z is
the distance along the axis, θ polar angle in a fixed plane perpendicular to the axis):

∆u =
1

r
∂r(r∂ru) +

1

r2
∂2
θθu+ ∂2

zz.

Symmetry implies that we loose the dependence with respect to θ; so the domain Ω is again
a rectangle ]0, R[×]0, |[ . We take the convention of numbering of the edges as in square()
(1 for the bottom horizontal ...); the problem is now:

r∂tu− ∂r(r∂ru)− ∂z(r∂zu) = 0 in Ω,

u(t = 0) = u0 +
z

Lz
(u1 − u)

u|Γ4 = u0, u|Γ2 = u1, α(u− ue) +
∂u

∂n
|Γ1∪Γ3 = 0. (3.3)
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Note that the PDE has been multiplied by r.
After discretization in time with an implicit scheme, with time steps dt, in the FreeFem++
syntax r becomes x and z becomes y and the problem is:

problem thermaxi(u,v)=int2d(Th)((u*v/dt + dx(u)*dx(v) + dy(u)*dy(v))*x)
+ int1d(Th,3)(alpha*x*u*v) - int1d(Th,3)(alpha*x*ue*v)
- int2d(Th)(uold*v*x/dt) + on(2,4,u=u0);

Notice that the bilinear form degenerates at x = 0. Still one can prove existence and
uniqueness for u and because of this degeneracy no boundary conditions need to be imposed
on Γ1.

3.4.2 A Nonlinear Problem : Radiation

Heat loss through radiation is a loss proportional to the absolute temperature to the fourth
power (Stefan’s Law). This adds to the loss by convection and gives the following boundary
condition:

κ
∂u

∂n
+ α(u− ue) + c[(u+ 273)4 − (ue + 273)4] = 0

The problem is nonlinear, and must be solved iteratively. If m denotes the iteration index,
a semi-linearization of the radiation condition gives

∂um+1

∂n
+ α(um+1 − ue) + c(um+1 − ue)(um + ue + 546)((um + 273)2 + (ue + 273)2) = 0,

because we have the identity a4 − b4 = (a − b)(a + b)(a2 + b2). The iterative process will
work with v = u− ue.

...
fespace Vh(Th,P1); // finite element space
real rad=1e-8, uek=ue+273; // def of the physical constants
Vh vold,w,v=u0-ue,b;
problem thermradia(v,w)

= int2d(Th)(v*w/dt + k*(dx(v) * dx(w) + dy(v) * dy(w)))
+ int1d(Th,1,3)(b*v*w)
- int2d(Th)(vold*w/dt) + on(2,4,v=u0-ue);

for(real t=0;t<T;t+=dt){
vold=v;
for(int m=0;m<5;m++){

b= alpha + rad * (v + 2*uek) * ((v+uek)ˆ2 + uekˆ2);
thermradia;

}
}
vold=v+ue; plot(vold);

3.5 Irrotational Fan Blade Flow and Thermal effects

Summary Here we will learn how to deal with a multi-physics system of PDEs on a Complex
geometry, with multiple meshes within one problem. We also learn how to manipulate the
region indicator and see how smooth is the projection operator from one mesh to another.
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