
36 CHAPTER 3. LEARNING BY EXAMPLES

3.2 Heat Exchanger

Summary Here we shall learn more about geometry input and triangulation files, as well
as read and write operations.

The problem Let {Ci}1,2, be 2 thermal conductors within an enclosure C0. The first one is
held at a constant temperature u1 the other one has a given thermal conductivity κ2 5 times
larger than the one of C0. We assume that the border of enclosure C0 is held at temperature
20◦C and that we have waited long enough for thermal equilibrium.
In order to know u(x) at any point x of the domain Ω, we must solve

∇ · (κ∇u) = 0 in Ω, u|Γ = g

where Ω is the interior of C0 minus the conductors C1 and Γ is the boundary of Ω, that is
C0∪C1 Here g is any function of x equal to ui on Ci. The second equation is a reduced form
for:

u = ui on Ci, i = 0, 1.

The variational formulation for this problem is in the subspace H1
0 (Ω) ⊂ H1(Ω) of functions

which have zero traces on Γ.

u− g ∈ H1
0 (Ω) :

∫
Ω

∇u∇v = 0 ∀v ∈ H1
0 (Ω)

Let us assume that C0 is a circle of radius 5 centered at the origin, Ci are rectangles, C1

being at the constant temperature u1 = 60◦C.

Example 3.3 (heatex.edp) // file heatex.edp
int C1=99, C2=98; // could be anything such that 6= 0 and C1 6= C2
border C0(t=0,2*pi){x=5*cos(t); y=5*sin(t);}

border C11(t=0,1){ x=1+t; y=3; label=C1;}
border C12(t=0,1){ x=2; y=3-6*t; label=C1;}
border C13(t=0,1){ x=2-t; y=-3; label=C1;}
border C14(t=0,1){ x=1; y=-3+6*t; label=C1;}

border C21(t=0,1){ x=-2+t; y=3; label=C2;}
border C22(t=0,1){ x=-1; y=3-6*t; label=C2;}
border C23(t=0,1){ x=-1-t; y=-3; label=C2;}
border C24(t=0,1){ x=-2; y=-3+6*t; label=C2;}

plot(C0(50) // to see the border of the domain
+ C11(5)+C12(20)+C13(5)+C14(20)
+ C21(-5)+C22(-20)+C23(-5)+C24(-20),
wait=true, ps="heatexb.eps");

mesh Th=buildmesh(C0(50)
+ C11(5)+C12(20)+C13(5)+C14(20)
+ C21(-5)+C22(-20)+C23(-5)+C24(-20));

plot(Th,wait=1);

3.2. HEAT EXCHANGER 37

fespace Vh(Th,P1); Vh u,v;
Vh kappa=1+2*(x<-1)*(x>-2)*(y<3)*(y>-3);
solve a(u,v)= int2d(Th)(kappa*(dx(u)*dx(v)+dy(u)*dy(v)))

+on(C0,u=20)+on(C1,u=60);
plot(u,wait=true, value=true, fill=true, ps="heatex.eps");

Note the following:

• C0 is oriented counterclockwise by t, while C1 is oriented clockwise and C2 is oriented
counterclockwise. This is why C1 is viewed as a hole by buildmesh.

• C1 and C2 are built by joining pieces of straight lines. To group them in the same
logical unit to input the boundary conditions in a readable way we assigned a label
on the boundaries. As said earlier, borders have an internal number corresponding
to their order in the program (check it by adding a cout<<C22; above). This is
essential to understand how a mesh can be output to a file and re-read (see below).

• As usual the mesh density is controlled by the number of vertices assigned to each
boundary. It is not possible to change the (uniform) distribution of vertices but a
piece of boundary can always be cut in two or more parts, for instance C12 could be
replaced by C121+C122:

// border C12(t=0,1) x=2; y=3-6*t; label=C1;
border C121(t=0,0.7){ x=2; y=3-6*t; label=C1;}
border C122(t=0.7,1){ x=2; y=3-6*t; label=C1;}
... buildmesh(.../* C12(20) */ + C121(12)+C122(8)+...);

IsoValue

15.7895

22.1053

26.3158

30.5263
34.7368

38.9474

43.1579

47.3684

51.5789
55.7895

60

64.2105

68.4211

72.6316
76.8421

81.0526

85.2632

89.4737

93.6842
104.211

Figure 3.2: The heat exchanger

Exercise Use the symmetry of the problem with respect to the axes; triangulate only one
half of the domain, and set Dirichlet conditions on the vertical axis, and Neumann conditions
on the horizontal axis.

38 CHAPTER 3. LEARNING BY EXAMPLES

Writing and reading triangulation files Suppose that at the end of the previous program
we added the line

savemesh(Th,"condensor.msh");

and then later on we write a similar program but we wish to read the mesh from that file.
Then this is how the condenser should be computed:

mesh Sh=readmesh("condensor.msh");
fespace Wh(Sh,P1); Wh us,vs;
solve b(us,vs)= int2d(Sh)(dx(us)*dx(vs)+dy(us)*dy(vs))

+on(1,us=0)+on(99,us=1)+on(98,us=-1);
plot(us);

Note that the names of the boundaries are lost but either their internal number (in the case
of C0) or their label number (for C1 and C2) are kept.

3.3 Acoustics

Summary Here we go to grip with ill posed problems and eigenvalue problems
Pressure variations in air at rest are governed by the wave equation:

∂2u

∂t2
− c2∆u = 0.

When the solution wave is monochromatic (and that depend on the boundary and initial
conditions), u is of the form u(x, t) = Re(v(x)eikt) where v is a solution of Helmholtz’s
equation:

k2v + c2∆v = 0 in Ω,
∂v

∂n
|Γ = g. (3.1)

where g is the source. Note the “+” sign in front of the Laplace operator and that k > 0 is
real. This sign may make the problem ill posed for some values of c

k
, a phenomenon called

“resonance”.
At resonance there are non-zero solutions even when g = 0. So the following program may
or may not work:

Example 3.4 (sound.edp) // file sound.edp
real kc2=1;
func g=y*(1-y);

border a0(t=0,1) { x= 5; y= 1+2*t ;}
border a1(t=0,1) { x=5-2*t; y= 3 ;}
border a2(t=0,1) { x= 3-2*t; y=3-2*t ;}
border a3(t=0,1) { x= 1-t; y= 1 ;}
border a4(t=0,1) { x= 0; y= 1-t ;}
border a5(t=0,1) { x= t; y= 0 ;}
border a6(t=0,1) { x= 1+4*t; y= t ;}

3.4. THERMAL CONDUCTION 39

mesh Th=buildmesh(a0(20) + a1(20) + a2(20)
+ a3(20) + a4(20) + a5(20) + a6(20));

fespace Vh(Th,P1);
Vh u,v;

solve sound(u,v)=int2d(Th)(u*v * kc2 - dx(u)*dx(v) - dy(u)*dy(v))
- int1d(Th,a4)(g*v);

plot(u, wait=1, ps="sound.eps");

Results are on Figure 3.3. But when kc2 is an eigenvalue of the problem, then the solution
is not unique: if ue 6= 0 is an eigen state, then for any given solution u + ue is another a
solution. To find all the ue one can do the following

real sigma = 20; // value of the shift
// OP = A - sigma B ; // the shifted matrix

varf op(u1,u2)= int2d(Th)(dx(u1)*dx(u2) + dy(u1)*dy(u2) - sigma* u1*u2);
varf b([u1],[u2]) = int2d(Th)(u1*u2) ; // no Boundary condition see note
9.1

matrix OP= op(Vh,Vh,solver=Crout,factorize=1);
matrix B= b(Vh,Vh,solver=CG,eps=1e-20);

int nev=2; // number of requested eigenvalues near sigma

real[int] ev(nev); // to store the nev eigenvalue
Vh[int] eV(nev); // to store the nev eigenvector

int k=EigenValue(OP,B,sym=true,sigma=sigma,value=ev,vector=eV,
tol=1e-10,maxit=0,ncv=0);

cout<<ev(0)<<" 2 eigen values "<<ev(1)<<endl;
v=eV[0];
plot(v,wait=1,ps="eigen.eps");

3.4 Thermal Conduction

Summary Here we shall learn how to deal with a time dependent parabolic problem. We
shall also show how to treat an axisymmetric problem and show also how to deal with a
nonlinear problem.

How air cools a plate We seek the temperature distribution in a plate (0, Lx)× (0, Ly)×
(0, Lz) of rectangular cross section Ω = (0, 6) × (0, 1); the plate is surrounded by air at
temperature ue and initially at temperature u = u0 + x

L
u1. In the plane perpendicular

to the plate at z = Lz/2, the temperature varies little with the coordinate z; as a first
approximation the problem is 2D.

We must solve the temperature equation in Ω in a time interval (0,T).

∂tu−∇ · (κ∇u) = 0 in Ω× (0, T),
u(x, y, 0) = u0 + xu1

κ
∂u

∂n
+ α(u− ue) = 0 on Γ× (0, T). (3.2)

40 CHAPTER 3. LEARNING BY EXAMPLES

Figure 3.3: Left:Amplitude of an acoustic signal coming from the left vertical wall. Right:
first eigen state (λ = (k/c)2 = 19.4256) close to 20 of eigenvalue problem :−∆ϕ = λϕ and
∂ϕ
∂n

= 0 on Γ

Here the diffusion κ will take two values, one below the middle horizontal line and ten times
less above, so as to simulate a thermostat. The term α(u − ue) accounts for the loss of
temperature by convection in air. Mathematically this boundary condition is of Fourier (or
Robin, or mixed) type.
The variational formulation is in L2(0, T ;H1(Ω)); in loose terms and after applying an
implicit Euler finite difference approximation in time; we shall seek un(x, y) satisfying for all
w ∈ H1(Ω): ∫

Ω

(
un − un−1

δt
w + κ∇un∇w) +

∫
Γ

α(un − uue)w = 0

func u0 =10+90*x/6;
func k = 1.8*(y<0.5)+0.2;
real ue = 25, alpha=0.25, T=5, dt=0.1 ;

mesh Th=square(30,5,[6*x,y]);
fespace Vh(Th,P1);
Vh u=u0,v,uold;

problem thermic(u,v)= int2d(Th)(u*v/dt + k*(dx(u) * dx(v) + dy(u) * dy(v)))
+ int1d(Th,1,3)(alpha*u*v)
- int1d(Th,1,3)(alpha*ue*v)
- int2d(Th)(uold*v/dt) + on(2,4,u=u0);

ofstream ff("thermic.dat");
for(real t=0;t<T;t+=dt){

uold=u; // uold ≡ un−1 = un ≡u
thermic; // here solve the thermic problem
ff<<u(3,0.5)<<endl;

3.4. THERMAL CONDUCTION 41

plot(u);
}

Notice that we must separate by hand the bilinear part from the linear one.
Notice also that the way we store the temperature at point (3,0.5) for all times in file
thermic.dat. Should a one dimensional plot be required, the same procedure can be
used. For instance to print x 7→ ∂u

∂y
(x, 0.9) one would do

for(int i=0;i<20;i++) cout<<dy(u)(6.0*i/20.0,0.9)<<endl;

Results are shown on Figure 3.4.

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

 56

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

"thermic.dat"

Figure 3.4: Temperature at T=4.9. Right: decay of temperature versus time at x=3, y=0.5

3.4.1 Axisymmetry: 3D Rod with circular section

Let us now deal with a cylindrical rod instead of a flat plate. For simplicity we take κ = 1.
In cylindrical coordinates, the Laplace operator becomes (r is the distance to the axis, z is
the distance along the axis, θ polar angle in a fixed plane perpendicular to the axis):

∆u =
1

r
∂r(r∂ru) +

1

r2
∂2
θθu+ ∂2

zz.

Symmetry implies that we loose the dependence with respect to θ; so the domain Ω is again
a rectangle]0, R[×]0, |[. We take the convention of numbering of the edges as in square()
(1 for the bottom horizontal ...); the problem is now:

r∂tu− ∂r(r∂ru)− ∂z(r∂zu) = 0 in Ω,

u(t = 0) = u0 +
z

Lz
(u1 − u)

u|Γ4 = u0, u|Γ2 = u1, α(u− ue) +
∂u

∂n
|Γ1∪Γ3 = 0. (3.3)

42 CHAPTER 3. LEARNING BY EXAMPLES

Note that the PDE has been multiplied by r.
After discretization in time with an implicit scheme, with time steps dt, in the FreeFem++
syntax r becomes x and z becomes y and the problem is:

problem thermaxi(u,v)=int2d(Th)((u*v/dt + dx(u)*dx(v) + dy(u)*dy(v))*x)
+ int1d(Th,3)(alpha*x*u*v) - int1d(Th,3)(alpha*x*ue*v)
- int2d(Th)(uold*v*x/dt) + on(2,4,u=u0);

Notice that the bilinear form degenerates at x = 0. Still one can prove existence and
uniqueness for u and because of this degeneracy no boundary conditions need to be imposed
on Γ1.

3.4.2 A Nonlinear Problem : Radiation

Heat loss through radiation is a loss proportional to the absolute temperature to the fourth
power (Stefan’s Law). This adds to the loss by convection and gives the following boundary
condition:

κ
∂u

∂n
+ α(u− ue) + c[(u+ 273)4 − (ue + 273)4] = 0

The problem is nonlinear, and must be solved iteratively. If m denotes the iteration index,
a semi-linearization of the radiation condition gives

∂um+1

∂n
+ α(um+1 − ue) + c(um+1 − ue)(um + ue + 546)((um + 273)2 + (ue + 273)2) = 0,

because we have the identity a4 − b4 = (a − b)(a + b)(a2 + b2). The iterative process will
work with v = u− ue.

...
fespace Vh(Th,P1); // finite element space
real rad=1e-8, uek=ue+273; // def of the physical constants
Vh vold,w,v=u0-ue,b;
problem thermradia(v,w)

= int2d(Th)(v*w/dt + k*(dx(v) * dx(w) + dy(v) * dy(w)))
+ int1d(Th,1,3)(b*v*w)
- int2d(Th)(vold*w/dt) + on(2,4,v=u0-ue);

for(real t=0;t<T;t+=dt){
vold=v;
for(int m=0;m<5;m++){

b= alpha + rad * (v + 2*uek) * ((v+uek)ˆ2 + uekˆ2);
thermradia;

}
}
vold=v+ue; plot(vold);

3.5 Irrotational Fan Blade Flow and Thermal effects

Summary Here we will learn how to deal with a multi-physics system of PDEs on a Complex
geometry, with multiple meshes within one problem. We also learn how to manipulate the
region indicator and see how smooth is the projection operator from one mesh to another.

	Introduction
	Installation
	For everyone:
	For the pros: Installation from sources

	How to use FreeFem++
	Environment variables, and the init file
	History

	Getting Started
	FEM by FreeFem++ : how does it work?
	Some Features of FreeFem++

	The Development Cycle: Edit–Run/Visualize–Revise

	Learning by Examples
	Membranes
	Heat Exchanger
	Acoustics
	Thermal Conduction
	Axisymmetry: 3D Rod with circular section
	A Nonlinear Problem : Radiation

	Irrotational Fan Blade Flow and Thermal effects
	Heat Convection around the airfoil

	Pure Convection : The Rotating Hill
	The System of elasticity
	The System of Stokes for Fluids
	A Projection Algorithm for the Navier-Stokes equations
	Newton Method for the Steady Navier-Stokes equations
	A Large Fluid Problem
	An Example with Complex Numbers
	Optimal Control
	A Flow with Shocks
	Classification of the equations
	Optimize Time depend schema for Heat equation
	Tutorial to write a transient Stokes solver in matrix form

	Syntax
	Data Types
	List of major types
	Global Variables
	System Commands
	Arithmetics
	string expression
	Functions of one Variable
	Functions of two Variables
	Formula
	FE-functions

	Arrays
	Arrays with two integer indices versus matrices
	Matrix construction and setting
	Matrix Operations
	Other arrays

	Map arrays
	Loops
	Input/Output
	Script arguments

	preprocessor
	Exception handling

	Mesh Generation
	Commands for Mesh Generation
	Square
	Border
	Multi-Border
	Data Structures and Read/Write Statements for a Mesh
	Mesh Connectivity and data
	The keyword "triangulate"

	Boundary FEM Spaces Built as Empty Meshes
	Remeshing
	Movemesh

	Regular Triangulation: hTriangle
	Adaptmesh
	Trunc
	Splitmesh
	Meshing Examples
	How to change the label of elements and border elements of a mesh
	Mesh in three dimensions
	cube
	Read/Write Statements for a Mesh in 3D
	TeGen: A tetrahedral mesh generator
	Reconstruct/Refine a three dimensional mesh with TetGen
	Moving mesh in three dimensions
	Layer mesh

	Meshing examples
	Build a 3d mesh of a cube with a balloon

	The output solution formats .sol and .solb
	medit
	Mshmet
	FreeYams
	mmg3d
	A first 3d isotope mesh adaptation process
	Build a 2d mesh from a isoline

	Finite Elements
	Use of ``fespace'' in 2d
	Use of fespace in 3d
	Lagrangian Finite Elements
	P0-element
	P1-element
	P2-element

	P1 Nonconforming Element
	Other FE-space
	Vector valued FE-function
	Raviart-Thomas element

	A Fast Finite Element Interpolator
	Keywords: Problem and Solve
	Weak form and Boundary Condition

	Parameters affecting solve and problem
	Problem definition
	Numerical Integration
	Variational Form, Sparse Matrix, PDE Data Vector
	Interpolation matrix
	Finite elements connectivity

	Visualization
	Plot
	link with gnuplot
	link with medit

	Algorithms and Optimization
	conjugate Gradient/GMRES
	Algorithms for Unconstrained Optimization
	Example of utilization for BFGS or CMAES

	IPOPT
	Short description of the algorithm
	IPOPT in FreeFem++

	Some short examples using IPOPT
	3D constrained minimal surface with IPOPT
	Area and volume expressions
	Derivatives
	The problem and its script :

	The nlOpt optimizers
	Optimization with MPI

	Mathematical Models
	Static Problems
	Soap Film
	Electrostatics
	Aerodynamics
	Error estimation
	Periodic Boundary Conditions
	Poisson Problems with mixed boundary condition
	Poisson with mixted finite element
	Metric Adaptation and residual error indicator
	Adaptation using residual error indicator

	Elasticity
	Fracture Mechanics

	Nonlinear Static Problems
	Newton-Raphson algorithm

	Eigenvalue Problems
	Evolution Problems
	Mathematical Theory on Time Difference Approximations.
	Convection
	2D Black-Scholes equation for an European Put option

	Navier-Stokes Equation
	Stokes and Navier-Stokes
	Uzawa Algorithm and Conjugate Gradients
	NSUzawaCahouetChabart.edp

	Variational inequality
	Domain decomposition
	Schwarz Overlap Scheme
	Schwarz non Overlap Scheme
	Schwarz-gc.edp

	Fluid/Structures Coupled Problem
	Transmission Problem
	Free Boundary Problem
	Non linear Elasticity (nolinear-elas.edp)
	Compressible Neo-Hookean Materials: Computational Solutions
	Notation
	A Neo-Hookean Compressible Material
	An Approach to Implementation in FreeFem++

	Whispering gallery modes
	Wave equation for the WGMs

	Weak formulation
	A dielectric sphere example with FreeFem++

	MPI Parallel version
	MPI keywords
	MPI constants
	MPI Constructor
	MPI functions
	MPI communicator operator
	Schwarz example in parallel
	True parallel Schwarz example

	Parallel sparse solvers
	Using parallel sparse solvers in FreeFem++
	Sparse direct solver
	MUMPS solver
	SuperLU distributed solver
	Pastix solver

	Parallel sparse iterative solver
	pARMS solver
	Interfacing with HIPS
	Interfacing with HYPRE
	Conclusion

	Domain decomposition
	Communicators and groups
	Process
	Points to Points communicators
	Global operations

	HPDDM solvers
	Time dependent problem
	Distributed vectors in HPDDM

	Mesh Files
	File mesh data structure
	bb File type for Store Solutions
	BB File Type for Store Solutions
	Metric File
	List of AM_FMT, AMDBA Meshes

	Addition of a new finite element
	Some notations
	Which class to add?

	Table of Notations
	Generalities
	Sets, Mappings, Matrices, Vectors
	Numbers
	Differential Calculus
	Meshes
	Finite Element Spaces

	Grammar
	The bison grammar
	The Types of the languages, and cast
	All the operators

	Dynamical link
	A first example myfunction.cpp
	Example: Discrete Fast Fourier Transform
	Load Module for Dervieux' P0-P1 Finite Volume Method
	More on Adding a new finite element
	Add a new sparse solver

	Plugin
	gsl
	ffrandom

	Keywords

